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1. BACKGROUND AND RESEARCH NEED 
Addressing trespassing along railroad rights-of-way (ROW) was a top priority for the Federal 
Railroad Association (FRA). Pedestrian trespassing remained the leading cause of rail-related 
deaths in the United States, reporting 539 fatalities in 2019 and 528 in 2020.1 Trespass-related 
fatalities exceeded 500 since 2017, contrasting with highway-rail fatalities, which stayed below 
300 in 2019 (294) and 2020 (198).2 The reported trespass-related fatalities for 2019 and 2020 
marked the highest numbers in the past 15 years. 
 
In 2020, FRA statistics ranked North Carolina as the 12th state with the most pedestrian rail 
trespass casualties, reporting 12 deaths and 12 injuries out of 1,099 total casualties for the 
nation.3 Over the 5-year period from January 2015 to December 2020, 97 pedestrians were killed 
while trespassing along the railroad right-of-way in North Carolina.4  
 
Recent NCDOT-funded research delved into pedestrian trespassing on and around railroad 
ROW, including two studies observing, quantifying, and modeling trespassing activity across 
North Carolina5,6. This research allowed ITRE to accurately model expected trespassing activity 
based on factors like the percentage of people without cars walking to work, and business 
densities in various sectors such as retail, grocers, and low-income housing. While the previous 
research shed light on trespassing influences, it did not provide a clear picture of the frequency 
and severity of near-misses, as stationary thermal cameras only captured a fraction of the 
phenomenon. These near-miss events, not resulting in casualties, were not included in FRA's 
incident reports on trespassing. 

 
To address this gap, NCDOT funded a study to capture near-misses observed from trains, 
determining a cost-effective method for accurate quantification. This research offered a broader 
geographical representation of trespassing compared to static location studies, understanding 
hardware requirements for observing behavior from trains. Additionally, it created a machine 
learning algorithm capable of observing pedestrians near trains more accurately than human 
observers. The AI developed was crucial for handling the vast video data from train cameras, as 
manual observers couldn't effectively capture all trespassing activity. As detailed in this report, 
manual observation fell short in accurately documenting trespassing events around trains. 
 
2. LITERATURE REVIEW 

2.1. Railroad Trespasser Detection 
As discussed earlier, trespassing emerged as the primary cause of rail-related deaths in the 
United States, with over 500 trespass-related fatalities occurring each year since 2017.2 The 
Federal Railroad Administration (FRA) designated this issue as a high-priority concern during 
their 2017 Grade Crossing Research Needs Workshop, establishing five focus areas related to 
their research needs.7 In the focus area of Community Outreach and Education, the top 
recommendation was to enhance trespasser identification, motivation, and messaging.7  
 
In previous studies, stationary camera footage was employed at hotspot locations for trespassing 
along a railroad right-of-way (ROW) to aid in trespasser identification. A study led by the FRA 
Office of Research, Development, and Technology (RD&T), in collaboration with the U.S. 
Department of Transportation (USDOT) and the John A. Volpe National Transportation Systems 
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Center (Volpe), utilized stationary cameras at a ROW in Worcester, Massachusetts, identifying 
115 trespassers in a 30-day period in 2017. Data analysis revealed that at this specific site, the 
majority of trespassers were loitering under or around the bridge ROW, with most of them also 
engaging in drug use according to video analysis. Recommendations from this study included 
ongoing outreach to the homeless population, increased installation of NO TRESPASSING 
signs, and heightened law enforcement patrols in the area.8 While this study contributed to 
understanding the types of trespassers in the local area of Worcester, MA, it only represents a 
small portion of the trespasser types found along railroad ROW across the nation. 

 
Beyond ITRE research, Rutgers University established itself as a leading railroad trespassing 
research group nationwide. In 2018, Zaman et al. published research regarding the use of 
artificial intelligence (AI) on video recorded from cameras already in place on trains, along 
tracks, at grade crossings, and in train stations.9 This research focused on a grade crossing in 
New Jersey, developing an algorithm that successfully identified near-miss events between 
pedestrians and trains. Similarly, Zhang et al. focused on railroad tracks immediately adjacent to 
and across at-grade crossings, considering the presence of vehicles or pedestrians in correlation 
with the position of the crossing gate and the presence of a train.10 This research identified 
thousands of trespassers over several weeks, assigning demographic information to those 
trespassing events and noting the surrounding environment for future countermeasure selection. 
This research also highlighted the need for AI compared to human observation of trespassing 
behavior due to observer fatigue, a crucial conclusion of this report. A more recent article by the 
same Rutgers researchers discusses using AI to send real-time alerts to railroad or public safety 
personnel regarding trespassing events detected.11 This research includes motor vehicles as well 
as pedestrians and, like previous Rutgers research, utilizes existing camera infrastructure without 
requiring new installations. Notably, the Rutgers researcher papers emphasize the AI's ability to 
capture all trespassing events while producing minimal or no false positives, a promising 
aspect.9,10,11 

 
Apart from previous research by ITRE and Rutgers researchers, machine learning has not been 
widely applied in research efforts for rail-trespass prevention, particularly on video captured 
from moving trains.12 Machine learning has found success in other areas of transportation 
research, such as applications with autonomous vehicles and Advanced Driver Assistance 
Systems (ADAS). In a study published in the Journal of Advanced Transportation, researchers 
used mounted cameras in vehicles and machine learning technology to enhance driving style 
recognition technology with vehicle trajectory data.13 The aim of developing this technology is 
for machine learning to assist autonomous vehicles and ADAS in preventing rear-end 
collisions.13 

 

2.2. Pedestrian Detection Using AI/ML 
Pedestrian detection and trajectory tracking witnessed significant progress in recent years due to 
the development of deep learning techniques. This application is part of object detection and 
finds extensive use in areas such as automatic driving14,15,16 and video surveillance. In the 
domain of automatic driving, a camera captures environmental information akin to human eyes, 
while a lidar provides position data, and a wireless sensor network aids in additional sensing and 
communication. Similarly, train security monitoring utilizes cameras on moving trains to 
enhance safety through real-time pedestrian detection. 
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The inception of deep learning for pedestrian detection occurred in 2014 when Girshick et al. 
introduced RCNNError! Reference source not found.. Subsequent advancements included Fast RCNN18 
and Faster RCNN19, which aimed to simplify the algorithm and reduce computational 
complexity. Building upon Faster RCNN, Mask RCNN20 emerged to address general object 
detection and pedestrian detection challenges. 
 
The aforementioned methods follow a two-stage detection process involving region suggestion 
and object detection. In pursuit of improved efficiency and real-time applicability, one-stage 
detection was introduced. Unlike its two-stage counterpart, one-stage detection establishes a 
series of anchors on the feature map to predict the object center and bounding box directly. The 
YOLO series algorithms21 embody one-stage detection and prove versatile in various object 
detection tasks. While one-stage detection might lead to missed detections in crowded pedestrian 
scenes, its high detection speed proves valuable for real-time applications, particularly in the 
field of intelligent driving. To further enhance efficiency, Wei Liu et al. proposed an anchor-free 
object detection mode in 201922, garnering attention from various works23,24,25. 
 
Several public datasets contribute to pedestrian detection training and validation, including 
Caltech26, KITTI27, and CityPersons28. Commonly used datasets in the broader object detection 
field, such as COCO29, also aid in building pedestrian detection models. Despite these resources, 
there remains limited data covering diverse contents. In 2020, Guofa Li et al. enriched their 
database by collecting pedestrian images in hazy weather and employing six augmentation 
strategies24. In 2021, Matteo Fabbri et al. introduced MOTSynth30, a synthetic dataset generated 
by a rendering game engine to simulate various aspects of the multi-person tracking problem. 
This extensive and diverse dataset significantly improves detection performance. 
 
3. METHODOLOGY  

3.1. Dynamic Trespassing Detection System 
3.1.1. Technology Evaluation 

The research team recognized that video would be the appropriate method to capture trespassing 
events along railroads, but they faced a challenge in determining the most suitable technology – 
thermal video or simple RGB ("red, green, blue," or color) video. Thermal cameras offered an 
advantage at night and during severe weather, but they came with higher costs and generally 
lower resolution compared to standard RGB cameras. The team understood that resolution could 
impact machine learning algorithms, which tend to perform better with higher resolution images. 
 
Regardless of the chosen camera system, the team needed to develop an algorithm for both 
thermal and color video images. This algorithm had to effectively identify potential humans and 
distinguish them from other animals or objects within the camera view. Developing such 
algorithms required numerous images for training, both with and without the subjects of interest. 
To achieve this, cameras needed to be installed on trains. Staged events with both types of 
cameras were also conducted to ensure the team could identify video clips containing humans. 
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3.1.2. Description of Selected System 
Initially, thermal cameras seemed promising due to their ability to detect heat signatures, 
especially at night and in adverse weather conditions. However, during pilot data collection, the 
team discovered a potential issue with thermal cameras. Heat signatures from rail lines, animals, 
pavement, and even the ground could be detected, diminishing the perceived advantage of 
thermal technology. Discussions with rail crews and train conductors revealed that the bright 
headlights on trains could effectively illuminate as far as RGB cameras could see, reducing the 
advantage of thermal cameras. 
 
To address this, the team decided to test both thermal and RGB cameras during all pilot testing 
and future data collection events, developing algorithms for both. The team leveraged their 
experience with AXIS thermal cameras and AXIS Companion, the AXIS video management 
software, gained from previous NCDOT-sponsored rail trespassing research at static locations. 
Additionally, ITRE owned several AXIS thermal cameras, as depicted in  Figure 1, attached to a 
train. shows an image of one of the AXIS thermal cameras attached to a train. The research team 
also had prior experience with and a small inventory of Hikvision RGB cameras, also featured in 
Figure 1. 
 

 
Figure 1. Example of Camera Systems Installed on a Train 

3.1.3. Pilot Testing 
Before engaging in camera installations or testing on actual railroads, trains, or other rail 
equipment, the research team conducted preliminary tests on thermal and RGB cameras attached 
to an NCSU-owned minivan. The cameras were mounted on a steel plate with strong magnets on 
the opposite side. This setup was magnetically affixed to the front of the minivan. NCSU 
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students employed by ITRE drove the minivan around the NCSU campus, capturing pedestrian 
activity typical of large college campuses. It's important to note that, at this stage, an algorithm 
was written and tested for this configuration but was in an early stage and to a limited extent. 
This testing was conducted solely for experimental purposes, and the research team recognized 
the need to limit time spent on this effort, understanding that it wouldn't translate well to the 
algorithm for video captured from trains on railroads. Additionally, this effort predated the 
funding of this research by the NCDOT and served as an added value to previous static rail 
trespass research. 
 

3.2. Experiment Design with Controlled Environment  
3.2.1. Site Selection 

For the controlled rail-trespass experiment, the research team selected two sites owned by the 
Red Springs and Northern Railroad Foundation (RSN). These sites encompass inactive rail 
sections acquired by RSN in 2004, now maintained by the foundation for local fundraising and 
public service events. An RSN member supported the field team throughout the research by 
providing and operating a hi-rail vehicle for controlled studies. Two separate trips to the RSN 
railroad were conducted to enhance the database of controlled-trespassing incidents. Two sites in 
the area were utilized. The first site, situated in the town of Parkton along the Red Springs and 
Northern Railroad, is depicted in Figure 2, while the second site is just outside of Red Springs, 
shown in FIGURE 3. Research activities were conducted at both sites during the first trip, while 
the second trip focused solely on the Red Springs site to minimize travel time between locations. 
 

3.2.2. Data Collection 
3.2.2.1. Preparation 

To prepare for field trials, the research team created a map using Google MyMaps to identify 
potential sites along the tracks. A week before conducting trials, the team visited the site to place 
stakes for crossing points. For each subject, five stakes were positioned: a center point where 
they stood at the trial's outset, two stakes 200 feet in each direction from the center, and two 
stakes 600 feet in each direction. These stakes served to guide subjects on where to stand and 
when to perform the prescribed maneuver based on their distance from the approaching hi-rail 
vehicle. The team chose two curved locations of tracks—one in the sun and one in the shade—
and two straight locations, also with one in the sun and the other shaded, to introduce varying 
lighting conditions. As illustrated in the experiment design figures below, a fifth crossing point 
beyond subject four was added at both locations. 
 
Figure 2 and Figure 3 depict the experiment design slides printed for each subject. Each slide 
displayed the trial number, maneuver type, and train direction. Additionally, the slides featured 
each subject's center point as a pink marker and their 600-foot stake as an orange place marker. 
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Figure 2. Parkton Experiment Design 
 

 
Figure 3. Red Springs Experiment Design 
 

3.2.2.2. Field Trial 1 
The first field trial was conducted on Wednesday, June 16th, 2021.  In order to establish a diverse 
database for the machine learning algorithm, the research team included various crossing 
behaviors, capturing subjects from different angles, distances, and postures. Below are examples 
of the crossing behaviors incorporated into the trials. 
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Figure 4. Crossing Behaviors 
For each crossing behavior, the red lines indicate movement in front of the approaching hi-rail 
vehicle, while green represents movement after the hi-rail has passed. The star in the crossing 
behavior images indicates the center point, marked with a stake at the research sites. Stakes were 
also positioned at 200 ft and 600 ft from each crossing point in both directions. During the 
experiment trials, subjects were instructed to initiate their movement when the hi-rail reached the 
600-foot or 200-foot mark, depending on the trial. Similarly, they were instructed to move as the 
hi-rail receded after passing, enabling the collection of movement data at various distances with 
the hi-rail approaching and receding from the subject. Additionally, these movements were 
conducted individually initially and then in groups, providing the algorithm with video footage 
of both individual trespassers and groups, mirroring real-world scenarios. 
In the last two examples in Figure 4, "Standing" and "Dealer’s Choice," subjects were 
encouraged to be creative, introducing a variety of postures (standing, crouching, waving their 
arms, etc.) and movements (running across the tracks, crossing multiple times in front of the hi-
rail, etc.). 

3.2.2.3. Field Trial 2 
The second field trial was conducted on Tuesday, July 13th, 2021. The research team conducted 
field trials in three sessions, starting with the morning session at the Parkton location, followed 
by afternoon and evening sessions at Red Springs. For each session, they captured data on 
individuals and groups performing the crossing behaviors described earlier. At each location, 
nine trials were conducted, including a test trial at the beginning of each session after positioning 
subjects at their sites. Two bullet RGB-Infrared cameras and two thermal cameras were installed 
on the front and back of the hi-rail vehicle, as shown in Figure 5 and Figure 6, to collect data 
both in front of and behind the hi-rail.  Figure 5 displays the camera installation on the hi-rail for 
Field Trial 1. 
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Figure 5. Camera Installation on Hi-Rail for Field Trial 1 

 
3.2.2.4. Field Trial 3 

The third field trial was conducted on Wednesday, November 10, 2021.  The second trip to the 
Red Spring and Northern Railroad replicated the procedure from the first trip, except for the 
morning session in Parkton. Field Trial 3 consisted of sessions conducted in Red Springs, one in 
the afternoon and one in the evening. Video data were captured for individuals and groups 
performing crossing behaviors, totaling nine trials in the afternoon and nine at night, with a test 
trial at the beginning after setting subjects in place. The same cameras and setup from Field Trial 
1 were used. The primary difference was the use of a different hi-rail vehicle, depicted in Figure 
6, in the hope that it would provide smoother camera footage. The first trial test resulted in 
unstable video imagery, usable but not ideal for training the algorithm. Figure 6 illustrates the 
camera installation on the hi-rail for Field Trial 2. 
 

  
Figure 6. Camera Installation on Hi-Rail for Field Trial 2 
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3.2.2.5. Footage of Subjects Trespassing from Field Trials 1 and 2 
The following photos are screenshots from the downloaded footage collected during Field Trials 
1 through 3. These images represent various types of imagery with differing distances, lighting, 
and movements used to calibrate the machine learning algorithm. 

 

 
Figure 7. Daytime Footage of Individual Walking Along the Tracks 

 

 
Figure 8. Daytime Footage of Perpendicular Group Crossing 
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Figure 9. Nighttime footage of Individual Walking Along the Tracks 
 

 
Figure 10. Nighttime footage of Group Crossing 
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3.2.2.6. Summary of Controlled Data Collection Effort 
In the initial testing of cameras installed on the hi-rail vehicles, the team quickly observed that 
the images tended to be jumpy and unstable due to vibrations caused by metal wheels on metal 
rails. This issue was partly due to the small and light nature of the hi-rail vehicles, which lacked 
suspension. Additionally, the cameras were being used atypically, as they are typically installed 
as security cameras on buildings, not on moving objects, and lacked image stabilization 
technology like GoPros. 
 
The team attempted to address the vibration issue by using stronger and tighter straps to attach 
the cameras to the hi-rail vehicles, which helped to some extent, but did not eliminate the 
problem. Complete elimination of vibration proved difficult due to the size and weight of the hi-
rail vehicles. However, video collected from train engines did not face the same issue, being 
much more stable and smoother. 
 
Early on, the team anticipated that only an RGB camera might be necessary for collecting 
trespassing data from trains due to the brightness of the headlights and the resolution issues with 
thermal cameras affecting the machine learning algorithm's video processing abilities. Testing 
continued with both thermal and RGB cameras throughout the data collection process, but the 
team recommends that future data collection efforts only utilize RGB cameras, not thermal 
cameras. 

3.3. Machine Learning and Modeling with AI  
The research team trained a pedestrian detection algorithm using a training dataset and validated 
it with test data. Experiments conducted in Red Springs and Parkton, NC, aimed to gather 
additional datasets similar to the data collected in Star, NC, to validate the developed algorithms. 
The collected dataset for experiments in Star, Red Springs, and Parkton examined factors and 
associated levels (Table 1) using both forward and rear-facing thermal and RGB camera 
arrangements with five subjects along a 2-mile section of railroad. After calibrating and 
validating the algorithm in a controlled environment, the research team tested it against real-
world video data from active rail scenarios. 
 

Factor Levels 
Direction of travel Away from Train, Towards Train, Stationary 
Distance to redirect from travel path 200’, 600’ 
Time frame to continue after train passes 1 second, 5 seconds 
Direction of travel after train passes Away from Train, Towards Train, Cross Perpendicular 
Section type Straight or Curve 
Lighting type Direct sun, shade, nighttime (not included in the Star, NC dataset 

from 2017) 
Table 1. Experiment Design Factors and Associated Levels 
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3.4. Experiment Design with Active Rail 
3.4.1. Site Selection 

After controlled environment testing, the team needed to test the algorithm on trains commuting 
on active rail lines. Despite concerns about rail companies' hesitancy to allow research on their 
private property, the research team identified forward-thinking rail companies that welcomed and 
encouraged this research: Aberdeen-Carolina Western Railroad (ACWR) in south-central North 
Carolina and Blue Ridge Southern Railroad (BLU) in western North Carolina. 
 

3.4.2. Camera Installation and Data Collection 
Aberdeen-Carolina Western Railroad 

The ACWR offices in Candor, North Carolina, were visited by the research team in March 2020 
to determine potential installation locations on their train. ACWR staff provided assistance, 
determining suitable locations inside the train for camera installation without obstructing the 
train engineer. Due to the COVID-19 pandemic, the actual camera installation occurred in June 
2020. The research team collaborated with the ACWR train maintenance crew to install ITRE 
thermal and RGB cameras on one train, ACWR 6909. Data were collected from this train 
between June 2020 and January 2022. 

 
The cameras were strategically installed near the top of the train between the front windshields, 
as shown in Figure 11, to capture trespassers and near-miss events. The power connection for the 
cameras was activated only when the train was in operation, preventing data collection during 
"dead" periods when the train was not running. 

 

 
a) ACWR Installation 

 
b) ACWR Camera Field of View 

Figure 11. Installation on ACWR Train with Field of View 
 

Blue Ridge Southern Railroad 
BLU, located in Canton, North Carolina, about 20 miles west of Asheville, allowed the research 
team to install thermal and RGB cameras on three different trains: BLU 4202, BLU 3932, and 
BLU 4204. The BLU maintenance staff played a crucial role in ensuring a clean and effective 
installation that did not interfere with train engineers. 
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a) BLU Installation 

 
b) BLU Camera Field of View 

Figure 12. Installation on BLU Train with Field of View 
 
The team conducted an initial installation trip in March 2021 for one BLU train, followed by 
additional installations on two more trains in May 2021. Data were collected from these trains 
between March 2021 and January 2022, as shown in Table 2.  
 

BLU Train Beginning End 

4202 March 2021 January 2022 

3932 May 2021 January 2022 

4204 May 2021 January 2022 

Table 2. BLU Train Recording Periods 
 
4. ALGORITHM DEVELOPMENT 

4.1. Data Annotation 
Two different annotation methods were employed—one for thermal videos and another for RGB 
videos. For thermal videos, the team initially used the video annotation toolbox in Matlab, 
requiring manual frame-by-frame label checking. However, this process was time-consuming 
and resource-intensive. Subsequently, the team transitioned to Labelbox31 for RGB video 
annotation, an online tool supporting automated labeling. Labelbox incorporates Easy tracker to 
assist in object tracking, allowing labelers to adjust box size and position when the tracker is 
ineffective, eliminating the need for manual modifications per frame. Labelbox also facilitates 
convenient data storage directly from Google Cloud, addressing the limitations of Matlab, which 
mandates saving data locally. 
 

4.2. Model Development 
4.2.1. System development 

The research team tackled the railroad trespassing issue by concentrating on reliable pedestrian 
detection based on proximity to the railroad. The approach involved training accurate pedestrian 
detection, robust railroad tracking, and integrating these modules to remove false detections. A 
three-phased system was designed, as illustrated in Figure 13. 
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Figure 13. System Work Flow 
 
In phase one, an object detection model was trained using YOLO variants (v3, v4, and YOLOX) 
and Detectron2. The models were evaluated on thermal and high-resolution RGB videos. In 
phase two, the tracking algorithm DeepSort was integrated with YOLO variants, enhancing 
prediction accuracy and reducing processing time. In phase three, a rail detection algorithm 
utilizing polynomial curve fitting was developed. This algorithm, capturing two rails more 
precisely than template-matching, concentrated on the focus area, optimizing computational 
resources.  

4.2.2. Algorithms 
In phase one, the popular object detection algorithm Yolo21 was tested, along with a popular 
object detection library Detectron232 which includes many fine-tuned models.  Yolo, which 
stands for “You Only Look Once,” is a highly efficient object detection algorithm for real-time 
processing. The basic idea is that an image can be evenly divided into several grid cells and a 
neural network backbone can be used to do predictions on each cell simultaneously. The outputs 
of the neural network are bounding box locations and the corresponding boxes’ probabilities for 
each class, which are the probabilities of seeing a person in this case. This dividing process can 
be done multiple times with different sizes of cells due to object size diversity. This produces 
many overlap bounding boxes for each object and some of them are not accurate enough to label 
the object precisely. The non-max suppression mechanism is implemented to solve this problem 
by keeping the bounding box with the highest probability over several overlapping boxes with 
the same prediction object.  
 
Because of the success of the YOLO architecture, there have been numerous YOLO variants 
released over the years. Three of those have been implemented in our work: YOLO v3, YOLO 
v4,  and YOLOX. YOLO v3 was a commonly used version published in 2018 by Joseph 
Redmon and Ali Farhadi33 based on the Dark-53 backbone. This is also the last YOLO version 
created by the original author. The two main improvements are 1) replacing the softmax 
activation function with independent logistic classifiers and 2) predicting on three different 
image scales to enhance the ability to recognize small objects. YOLO v4 was released by Alexey 
Bochkovskiy et al. in April 202034. YOLO v4 outperforms YOLOv3 by 10% in average 
precision and 12% in speed on the public dataset COCO35 through several new features including 
Weighted-Residual-Connections (WRC), Cross-Stage-Partial-connections (CSP), Cross mini-
Batch Normalization (CmBN), Self-adversarial-training (SAT) and Mish-activation,  Mosaic 
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data augmentation,  DropBlock regularization, and CioU loss. YOLOX was proposed by Zheng 
Ge et al. in August 202136. In YOLOX, the detector was rebuilt in an anchor-free manner and 
other advanced detection techniques, i.e., a decoupled head, and the leading label assignment 
strategy SimOTA were conducted to surpass all old YOLO models across a large-scale range. 
YOLO v3 and YOLO v4 were evaluated and compared on thermal videos collected as a part of 
this project. Next, the light version YOLOX was evaluated on high-resolution RGB videos 
collected likewise as a part of this project. 
 
Detectron 232 is a library developed by the Facebook AI Research team. This provides a number 
of state-of-the-art detection and segmentation algorithms including Mask R-CNN20 published in 
2018 by KaiMing He et al.. Mask R-CNN 101 version was tested on the new RGB videos. Mask 
R-CNN was developed based on Faster R-CNN37 by adding Rbinary mask outputs. This 
architecture is more generalizable to other tasks, e.g., estimating human poses and object 
segmentation, than YOLO architecture, but with a heavier computational load. This algorithm 
was treated as the baseline model for this research and it was compared with YOLOX on the 
collected RGB videos. 
 
In the second phase, the most popular object tracking algorithm, DeepSort38, is used. This 
algorithm is widely used due to its practicality. DeepSort has a core component called Kalman 
filtering which used a simple linear velocity model. This model has two variables, absolute 
position and velocity, used for predicting the next state. Therefore, this mechanism could not be 
used to remove the wrong prediction in the object detection model based on the prior state. To do 
that, DeepSort learns a deep association metric associated with the relation between the 
prediction by detection algorithm and Kalman filter on a large-scale dataset. During the online 
application, this association metric could speed up the algorithm by utilizing nearest neighbor 
queries in visual appearance space. In this application, this mechanism was added to YOLO v3 
and YOLO v4 on the thermal dataset and the research team investigated the potential gains. 
 
The railroad detection algorithm was developed specifically for this application and it uses 
polynomial curve fitting of two parallel lines on the physical space through some basic 
calibration of the image view. This algorithm can capture two rails at the same time more 
precisely than the template-matching approach39 that was used as a baseline, especially on 
curves. Some examples are shown below. 

 
Figure 14. Template Matching Approach Struggling to Identify Rails 
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Figure 15. Proposed Rail Identification Method 
A visualization of incorporating pedestrian detection and rail detection is shown in the image 
below. The blue lines are rails detected by the polynomial curve fitting algorithm and the red 
lines indicate the boundaries of our Region of Interest (ROI) near the railroad. Different 
thresholds were set for pedestrian detection in the ROI and on the outside. For example, the red 
and green boxes are both detections of people by YOLO v4. According to the different 
thresholds, the red color in the middle box indicates that this object is highly likely to be a 
person, while the detection on the green box is showing lower confidence.  

 
Figure 16. Example of How the System Works 
4.2.3. Evaluation Metrics 

To assess the performance of the system, basic standard metrics for a binary classification 
problem, including Precision and Recall, were employed. In the context of pedestrian detection, 
each object appearing in a given time frame was treated as a sample, with the total samples 
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encompassing all objects across all time frames. Detections of pedestrians were designated as the 
positive class, while the remaining instances constituted the negative class. 
 
For every prediction, the correctness was determined by assessing the overlap between the 
predicted bounding box and the ground truth. If this overlap exceeded a specified threshold, such 
as 0.6, the prediction was deemed a true detection. Conversely, predictions failing to meet this 
criterion were classified as false detections. Consequently, the four combinations of prediction 
results were identified as True Positive (TP), False Positive (FP), True Negative (TN), and False 
Negative (FN). 
 
Precision gauges detection accuracy, expressed as the ratio of true predictions to all predictions. 
Recall, on the other hand, reflects the system's ability to retrieve relevant instances, denoted by 
the ratio of true predictions to all positive samples. The equations for precision and recall are 
presented below. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 

In addition to standard metrics, the evaluation incorporates frame-based and event-based metrics. 
Frame-based metrics assess algorithms in time frames where at least one pedestrian is considered 
a positive sample. Similarly, event-based metrics regard each continuous period of individuals' 
presence as a positive sample, referred to as an event (as illustrated in Figure 17).  

 
Given this framework, precision and recall are computed using the same equations as standard 
metrics, with separate calculations for frame-based and event-based metrics. Unlike predicting 
the precise location of pedestrians, the algorithm's task becomes more manageable when 
determining whether pedestrians are present in the frame or not. 

 
Frame-based and event-based metrics showcase the algorithm's capability to function as an 
annotation assistant, facilitating the acceleration of the labeling process. To assess the 
algorithms' runtime efficiency, the Frame Per Second (FPS) metric is employed. FPS indicates 
the number of frames the algorithm can process in one second, serving as a measure of its real-
time processing capability. A higher FPS signifies a faster processing speed. 

 
4.3. Implementation and Results 

4.3.1. Results for thermal images 
Due to the limited data available from the thermal camera, training for YOLO v3 and YOLO v4-
based architectures utilized the FLIR dataset40, accessible online. To assess the DeepSort 
tracker's effectiveness, the performance of the detector-only model was compared to the 
combined model using standard metrics. The analysis employed the small version of YOLO v3, 
and the numeric results are presented in Table 3.  
 
In the absence of integration with the tracker, YOLO v3 achieved only 32.2% precision and 
10.49% recall, primarily due to numerous false detections. DeepSort contributed to a notable 
improvement, enhancing precision to 75.00% and recall to 12.60% by eliminating unassociated 
detections, often mistakenly identified by the detector. This suggests that the system excels at 
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providing accurate individual predictions but faces challenges in capturing all subjects, as 
evidenced by the relatively low recall values. 
 
The limitation arises when subjects are situated far away from the camera, resulting in their size 
being too small for recognition by the system due to the thermal camera's low resolution. 
Addressing this challenge could be achieved through hardware improvements, primarily by 
enhancing camera resolution, or by expanding the dataset with images of pedestrians positioned 
farther away. Such enhancements would contribute to the algorithm's ability to overcome this 
specific issue. 
 

Detector Tracker Precision Recall 

YOLO V3-small None 32.20% 10.49% 

YOLO V3-small DeepSort 75.00% 12.60% 

Table 3. Comparison of Detector with and without Tracker 
Various versions of the YOLO v4 architecture with DeepSort were tested, and the results are 
detailed in Table 4. YOLO v4-original represents the original size of YOLO v4, while YOLO 
v4-small and YOLO v4-tiny are derived from YOLO V4-original with reduced weights. 
 
Comparing YOLO v3-small and YOLO v4-small systems, the upgrade from YOLO v3 to YOLO 
v4 yielded a notable improvement, increasing precision by 15.75% and recall by 5.3%. Notably, 
the small version of YOLO v4 did not significantly decrease precision compared to the original 
version, but it experienced a 5.46% drop in recall. The tiny version exhibited the fastest 
processing speed at 43.41 mean FPS but at the expense of a substantial reduction in precision 
and recall. 
 
In the context of pedestrian detection, the failure to identify objects poses a risk of traffic 
accidents. The challenges contributing to low recall include the small size of individuals and the 
low resolution of thermal images, as previously mentioned. To enhance performance, blurred 
images were introduced into the training data to instruct the model in recognizing challenging 
cases. This approach, applied to the YOLO v4-small system, resulted in approximately a 6% 
improvement in recall. However, the speed also increased to 24.07 FPS, accompanied by a 
decrease in precision to 72.65%. The decline in precision suggests that the available data may be 
insufficient for the model to learn comprehensively. 
 

System Precision Recall Mean FPS 

YOLO V4-small + DeepSort 90.78% 17.90% 21.55 

YOLO V4-original + DeepSort 90.40% 22.66% 15.09 

YOLO V4-tiny + DeepSort 74.36% 7.27% 43.41 

YOLO V4-blur + DeepSort 72.65% 23.78% 24.07 
Table 4. Comparison of Different Versions of YOLO V4 
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4.3.2. Results for RGB images 
With the availability of RGB videos, the object detection algorithm in the existing pipeline 
underwent an upgrade to the latest version of YOLO, specifically YOLOX. The evaluation 
utilized two new datasets recorded at The Red Springs and Northern Railroad in Parkton, NC. 
These datasets, recorded on three different dates, are denoted as Red Springs 1, Red Springs 2, 
and Red Springs 3. 
 
For the initial testing of YOLOX, the data from Red Springs 1 and 2 were labeled by identifying 
timestamps with any person present. Reliable detections of individuals were observed, 
particularly when they were in close proximity to the camera. However, it was noted that during 
the approach of the hi-rail to a person, there is a period when the algorithm becomes unstable. 
Figure 17 illustrates this instability, with the red line representing prediction results. High values 
indicate the algorithm's detection of a pedestrian in the frame, and vice versa. Peaks and valleys 
occur at the beginning of an event, such as when the camera is approaching a subject. 
 
To address this instability, a median filter was introduced after the prediction process to smooth 
out the erratic areas. The green line in Figure 17 depicts the filtered predictions. The median 
filter operates frame by frame, replacing each frame's result with the median or majority of 
neighboring results. After analyzing various filter sizes, it was determined that a filter size of 15 
frames yielded the best results for both Red Springs 1 and 2 datasets. The corresponding results 
are presented in in Table 5. 
 

 
Figure 17. Event Example from Front-Facing Camera 
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The algorithm's performance was assessed using two metrics: (1) frame-based and (2) event-
based. The frame-based approach treats each frame as an independent observation, revealing a 
high precision of >93% (indicating accurate detection) but a low recall of <50% (attributed to 
difficulties in detecting individuals further away from the camera). The event-based approach, 
considering the interval a person is visible as a single event, showed both high precision and 
recall, both exceeding 90%. These results suggest that the detector can be valuable in annotating 
people by signaling the occurrence of an event in the dataset. 
 

Dataset Frame 
Precision 

Frame 
Recall 

Event 
Precision 

Event 
Recall 

RedSpring 1 94.23% 37.19% 90.48% 90.48% 

RedSpring 2 93.20% 44.32% 100.00% 95.12% 

Table 5. Frame and Event Level Analysis with YOLOX architecture 
 
Upon examining Red Springs 1 & 2, two labeling assistant candidates were evaluated for use on 
Red Springs 3 data: YOLOX and Mask R-CNN. YOLOX achieved a higher frame precision of 
83.58%, while Mask R-CNN achieved a frame recall of 93.68%. Given the potential frustration 
caused by false detections triggering false alerts when the train is in motion, the high-speed 
YOLOX is deemed superior to Mask R-CNN. However, high recall is beneficial in the labeling 
process when real-time response is unnecessary, making Mask R-CNN a viable choice for AI-
assisted labeling. 
 

Detector Frame Precision Frame Recall 

YOLOX 83.58% 74.49% 

Detectron2 (Mask R-CNN) 41.22% 93.68% 
Table 6. YOLOX and Mask R-CNN Analysis on Red Springs 3 with frame-
based metrics 

AI-assisted labeling serves to reduce the human resources dedicated to labeling tasks. In practical 
scenarios, where videos can span several hours, manual annotation becomes time-consuming and 
cumbersome. Mask R-CNN's filtered predictions were imported into the Labelbox online 
annotation tool. For a 2.5-minute video, AI-assisted labeling using Mask R-CNN significantly 
accelerated the process, reducing the labeling time from 2 minutes and 41 seconds to 20 seconds. 
This substantial time reduction highlights Mask R-CNN's potential as a powerful assistant in 
video labeling. Further testing is required to refine conclusions on the tool's overall impact. 

4.4. Summary of Algorithm Findings 
In conclusion, state-of-the-art (SOTA) object detection algorithms, specifically the YOLO series, 
demonstrate superior precision in rail pedestrian detection challenges. The integration of tracking 
algorithms further enhances the ability to track and retrieve individuals. While this algorithm 
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may sacrifice a small percentage of performance by occasionally missing trespassers, the notable 
improvement in processing speed is a valuable trade-off, especially in the context of real-time 
detection and notification for train engineers. 
 
The latest iteration of the YOLO algorithm was successfully implemented on the most recent 
RGB datasets, incorporating a median filter. This combination yielded impressive results, 
achieving 90% event precision and recall on the RedSpring 1 dataset and 100% event precision 
with 95% event recall on the RedSpring 2 dataset. 
 
As a potential avenue for future work, rail detection could be integrated into the system to filter 
out unimportant objects distant from the rails, allowing the algorithm to allocate more attention 
to significant objects in close proximity to the rails. Additionally, these cutting-edge object 
detection algorithms can play a crucial role in AI-assisted labeling tools, accelerating the 
annotation process and generating more labeled datasets. This, in turn, can contribute to the 
ongoing development of automatic pedestrian detection systems. 
 
5. DISCUSSION AND REAL-WORLD DATA 
The installation of the YOLOX algorithm on a new machine running Ubuntu Operating Software 
posed challenges for researchers at ITRE in preparation for receiving real-world data. The 
algorithm required a specific setup, known as an environment, which proved to be a complex 
task due to constant updates in various packages. The algorithm specifically functioned with 
environment packages specified to a particular version. Despite the difficulties, the algorithm 
was eventually installed correctly and underwent testing on randomly selected test videos. The 
initial attempt to process the data through the algorithm involved copying one terabyte of the 
four terabytes of data locally onto the machine. The machine was left running for several days to 
process this substantial amount of data. 
 
However, an unknown error occurred during this process, leading to the corruption of the 
operating system on the machine. The cause of the failure remained undetermined, necessitating 
a complete wipe of the machine and a fresh reinstallation of the operating system. After this 
reinstallation, the environment was rebuilt, and the algorithm was once again installed. This 
time, the algorithm failed its initial quality check tests, detecting no humans at all. Despite 
multiple attempts at tweaking and fixing, it was concluded that the researcher who designed and 
calibrated the algorithm would need remote access to the machine, a challenging process for a 
Linux machine. The IT department at ITRE revealed that the machine was incompatible with the 
university's software architecture, prompting another complete operating system reinstallation. 
 
Faced with numerous delays, student interns were assigned the task of manually identifying 
trespassers and recording key characteristics from all four terabytes of video. The process took 
longer than expected, and by the time the algorithm was ready, the students had already 
completed their task. Consequently, a decision was made to run the algorithm only on the videos 
where trespassers had been identified by students, reducing the workload from tens of thousands 
of video clips to just under three hundred. 
 
After the second operating system reinstallation and the third installation of the environment and 
corresponding algorithm, videos identified with trespassers were successfully processed through 
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the algorithm, generating output videos. Student interns were then tasked with evaluating the 
algorithm by going through the output videos and determining key characteristics. 
 
Across all observed days, the students identified a total of 128 trespassers, with 53 having been 
inside the tracks at some point. Notably, the cameras capturing these trespassers were mounted 
on the front of a moving train. Twenty-nine of the trespassers were in groups of two or more, 
while the remaining 99 were trespassing alone. Fortunately, no pedestrian strikes were recorded, 
but a low-speed collision with a trailer occurred, failing to clear the tracks in time. 
 
Despite the challenges in installation, the algorithm proved more thorough than the initial pass 
by student interns. The algorithm detected 252 true positive trespassers in the same time period, 
with 121 of them having been in the tracks within sight of the train. However, the algorithm 
cannot completely replace human labor, as it flagged 3,427 objects as pedestrians, of which only 
786 (22.9%) were actual humans. Note:  534 of the 786 “trespassers” were identified as railroad 
workers when the train was turned on in the rail yard and were deemed “non-trespassers”, 
leaving 252 “true trespassers” for evaluation. 
 

Category 
Student Pass 

(all data) 

Algorithm Pass 
(Trespasser 

Sample) Difference 

Total Trespassers 128 252 124 

Trespassers in Tracks 53 121 68 

Table 7. ComparISON OF AI TO HUMAN ANALYSIS OF VIDEO 
The implementation of the algorithm has proven to be crucial, as it prevented the loss of 49.2% 
of trespassers and 56.2% of those within the tracks, representing individuals engaged in the 
highest risk behavior. This finding underscores the significant impact of the algorithm on 
detecting and mitigating potential risks. Further research is warranted to delve into this 
phenomenon, understanding the nuances and implications of these results. Investigating the 
specific circumstances surrounding the detected and undetected trespassers could provide 
valuable insights for refining and improving the algorithm's performance. Additionally, assessing 
the algorithm's efficacy in different scenarios and conditions would contribute to a more 
comprehensive understanding of its potential applications and limitations.  Last, although not 
discussed in great detail, removal of the train hood and increasing the pixilation should further 
increase the accuracy and precision of the algorithm. 
 
6. CONCLUSIONS 
The research team successfully identified 252 trespassers captured by cameras mounted on the 
front of trains, with over a hundred (121) found within the tracks while in the line of sight of the 
train. In comparison, manual methods only captured 128 trespassers, with only 53 found to be 
within the tracks.  While the frequency of such trespassing behavior is certainly concerning, the 
fact that AI found significantly more trespassing behavior aligns with the research's objective of 
capturing and understanding dangerous actions by humans around trains. 
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Further research is deemed necessary for enhancing the efficacy of the detection system. One 
avenue is exploring alternative camera placements that would avoid occluding areas directly in 
front of the train. This might involve mounting cameras in a way that conceals the front of the 
train from their view. Additionally, capturing videos in higher resolution and/or at a higher frame 
rate could contribute to improving the detection algorithm's performance. 
 
Efficient observation of all captured videos is another aspect that warrants exploration. Research 
into methods for managing and reviewing extensive video datasets, such as testing the detection 
algorithm on a sufficiently powerful computer or assessing smaller video samples at a time, 
could streamline the process. Furthermore, considering video capture in a time-lapse format may 
present another avenue for improvement in this regard. 
 
In summary, ongoing research and exploration of various enhancements, including alternative 
camera placements, improved video quality, and more efficient observation methods, will 
contribute to the refinement and optimization of the detection system.  
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